Nonlinearly coupled thermo-visco-elasticity
نویسندگان
چکیده
منابع مشابه
Thermo-visco-elasticity at Small Strains with L-data
Existence of a very weak solution to the d-dimensional thermo-viscoelasticity system for Kelvin-Voigt-type material at small strains involving (possibly nonlinear) monotone viscosity of a p-Laplacian type and temperature-dependent heat capacity of an (ω−1)-polynomial growth is proved by a successive passage to a limit in a suitably regularized Galerkin approximation and sophisticated a priori e...
متن کاملEffect of Rotation and Relaxation times on Plane Waves in Generalized Thermo-visco-elasticity
The generalized dynamical theory of thermo-elasticity proposed by Green and Lindsay is applied to study the propagation of harmonically time-dependent thermo-viscoelastic plane waves of assigned frequency in an infinite visco-elastic solid of Kelvin-Voigt type, when the entire medium rotates with a uniform angular velocity. A more general dispersion equation is deduced to determine the effects ...
متن کاملMathematical analysis of thermo-visco-elastic models
Motywacją do badań nad równaniami opisującymi odkształcenia termo-lepko-sprężyste jest potrzeba lepszego opisu procesów zachodzących w różnych materiałach oraz zbudowania lepszych modeli ich zachowania pod wpływem działania sił zewnętrznych. Wraz z rozwojem techniki zdobywamy głębszą wiedzę na temat różnych tworzyw. Pozwala nam to na tworzenie coraz bardziej poprawnych modeli opisujących zachow...
متن کاملAn Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...
متن کاملSlow Decay in Linear Thermo-elasticity
Energy estimates show that linearized thermo-elasticity deenes a contraction semi-group on a Hilbert space. We show that under a geometric condition this contraction is not strict, or, more precisely, the norm of the semi group is 1 for all t 0. Convex domains always satisfy the geometric condition. 2. introduction Let R n be a bounded domain with smooth boundary ?. We consider the problem @ 2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2012
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-012-0207-9